Impaired channel targeting and retinal degeneration in mice lacking the cyclic nucleotide-gated channel subunit CNGB1.

نویسندگان

  • Sabine Hüttl
  • Stylianos Michalakis
  • Mathias Seeliger
  • Dong-Gen Luo
  • Niyazi Acar
  • Heidi Geiger
  • Kristiane Hudl
  • Robert Mader
  • Silke Haverkamp
  • Markus Moser
  • Alexander Pfeifer
  • Andrea Gerstner
  • King-Wai Yau
  • Martin Biel
چکیده

Cyclic nucleotide-gated (CNG) channels are important mediators in the transduction pathways of rod and cone photoreceptors. Native CNG channels are heterotetramers composed of homologous A and B subunits. In heterologous expression systems, B subunits alone cannot form functional CNG channels, but they confer a number of channel properties when coexpressed with A subunits. To investigate the importance of the CNGB subunits in vivo, we deleted the CNGB1 gene in mice. In the absence of CNGB1, only trace amounts of the CNGA1 subunit were found on the rod outer segment. As a consequence, the vast majority of isolated rod photoreceptors in mice lacking CNGB1 (CNGB1-/-) failed to respond to light. In electroretinograms (ERGs), CNGB1-/- mice showed no rod-mediated responses. The rods also showed a slow-progressing degeneration caused by apoptotic death and concurred by retinal gliosis. Cones were primarily unaffected and showed normal ERG responses up to 6 months, but they started to degenerate in later stages. At the age of approximately 1 year, CNGB1-/- animals were devoid of both rods and cones. Our results show that CNGB1 is a crucial determinant of native CNG channel targeting. As a result of the lack of rod CNG channels, CNGB1-/- mice develop a retinal degeneration that resembles human retinitis pigmentosa.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Loss of CNGB1 protein leads to olfactory dysfunction and subciliary cyclic nucleotide-gated channel trapping.

Olfactory receptor neurons (ORNs) employ a cyclic nucleotide-gated (CNG) channel to generate a receptor current in response to an odorant-induced rise in cAMP. This channel contains three types of subunits, the principal CNGA2 subunit and two modulatory subunits (CNGA4 and CNGB1b). Here, we have analyzed the functional relevance of CNGB1 for olfaction by gene targeting in mice. Electro-olfactog...

متن کامل

Gene therapy restores vision and delays degeneration in the CNGB1(-/-) mouse model of retinitis pigmentosa.

Retinitis pigmentosa (RP) is a group of genetically heterogeneous, severe retinal diseases commonly leading to legal blindness. Mutations in the CNGB1a subunit of the rod cyclic nucleotide-gated (CNG) channel have been found to cause RP in patients. Here, we demonstrate the efficacy of gene therapy as a potential treatment for RP by means of recombinant adeno-associated viral (AAV) vectors in t...

متن کامل

Role of RDS and Rhodopsin in Cngb1-Related Retinal Degeneration

PURPOSE Rod photoreceptor outer segment (OS) morphogenesis, structural integrity, and proper signal transduction rely on critical proteins found in the different OS membrane domains (e.g., plasma, disc, and disc rim membrane). Among these key elements are retinal degeneration slow (RDS, also known as peripherin-2), rhodopsin, and the beta subunit of the cyclic nucleotide gated channel (CNGB1a),...

متن کامل

Cav1.4 L-Type Calcium Channels Contribute to Calpain Activation in Degenerating Photoreceptors of rd1 Mice

Retinitis pigmentosa is an inherited blinding disorder characterized by progressive degeneration and loss of photoreceptors. The exact mechanism of degeneration and cell death of photoreceptors is not known, but is thought to involve disturbed Ca2+-signaling. Ca2+ can enter the photoreceptor cell via outer segment cyclic nucleotide-gated (CNG) channels or synaptic Cav1.4 L-type voltage-gated ca...

متن کامل

Rod Cyclic Nucleotide-Gated Channels Have a Stoichiometry of Three CNGA1 Subunits and One CNGB1 Subunit

Phototransduction relies on the precise balance of speed and sensitivity to achieve optimal performance. The cyclic nucleotide-gated (CNG) ion channels, with their Ca(2+) permeability, high sensitivity to changes in cytosolic cGMP, rapid gating kinetics, and Ca(2+)-calmodulin modulation, are beautifully optimized for their role in light detection. Many of these specializations come about from t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 25 1  شماره 

صفحات  -

تاریخ انتشار 2005